A Study on Generalized Blaise Numbers
Asian Journal of Advanced Research and Reports,
Page 32-53
DOI:
10.9734/ajarr/2023/v17i1463
Abstract
In this paper, we introduce and investigate the generalized Blaise sequences and we deal with, in detail, two special cases, namely, Blaise and Blaise-Lucas sequences. We present Binet’s formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Furthermore, we show that there are close relations between Blaise, Blaise-Lucas and Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan, modified Jacobsthal-Padovan numbers. Moreover, we give some identities and matrices related with these sequences.
Keywords:
- Blaise numbers
- Blaise-Lucas numbers
- Jacobsthal-Padovan numbers
- Jacobsthal-Perrin numbers
- adjusted Jacobsthal-Padovan numbers
- modified Jacobsthal-Padovan numbers
How to Cite
References
sequences;2003.
Soykan Y. A Study on Generalized Jacobsthal-
Padovan Numbers. Earthline Journal of
Mathematical Sciences. 2020;4(2):227-251.
Available:https://doi.org/10.34198/ejms.4220.
Deveci, O¨ ., The Jacobsthal-Padovan p-Sequences
and Their Applications. Proceedings of Romanian
Academy, Series A. 2019;20(3);215–224.
Hathiwala GS, Shah DV. Binet–Type formula for
the sequence of Tetranacci numbers by alternate
methods. Mathematical Journal of Interdisciplinary
Sciences. 2017;6(1):37–48.
Melham RS, Some Analogs of the Identity F2
n +
F2
n+1 = F2
n+1, Fibonacci Quarterly. 1999;305-
Natividad LR. On Solving Fibonacci-Like
Sequences of Fourth, Fifth and Sixth Order,
International Journal of Mathematics and
Computing. 2013;3(2):38-40.
Singh B, Bhadouria P, Sikhwal O, Sisodiya K.
A formula for Tetranacci-like sequence. General
Mathematics Notes. 2014;20(2):136-41.
Soykan Y. Properties of Generalized (r,s,t,u)-
Numbers. Earthline Journal of Mathematical
Sciences, 2021;5(2):297-327.
Available:https://doi.org/10.34198/ejms.5221.
Soykan Y. A Study on Generalized Fibonacci
Polynomials: Sum Formulas. International
Journal of Advances in Applied Mathematics and
Mechanics. 2022;10(1):39-118.
(ISSN: 2347-2529)
Soykan Y. On Generalized Fibonacci Polynomials:
Horadam Polynomials, Earthline Journal of
Mathematical Sciences. 2023;11(1):23-114.
E-ISSN: 2581-8147.
Available: https://doi.org/10.34198/ejms.11123.
Waddill ME. Another Generalized Fibonacci
Sequence, M. E., Fibonacci Quarterly.
;5(3):209-227.
Waddill ME. The Tetranacci Sequence and
Generalizations. Fibonacci Quarterly. 1992; 9-20.
Howard FT, Saidak F. Zhou’s Theory of
Constructing Identities, Congress Numer.
;200:225-237.
Soykan Y. Simson Identity of Generalized mstep
Fibonacci Numbers, International Journal of
Advances in Applied Mathematics and Mechanics.
;7(2):45-56.
Soykan Y. A Study On the Recurrence Properties
of Generalized Tetranacci Sequence, International
Journal of Mathematics Trends and Technology.
;67(8):185-192.
DOI:10.14445/22315373/IJMTT-V67I8P522
Soykan; AJARR, Asian J. Adv. Res. Rep., vol. 17, no. 1, pp. 32-53, 2023; Article no.AJARR.95531
Soykan Y. On the Recurrence Properties of
Generalized Tribonacci Sequence, Earthline
Journal of Mathematical Sciences. 2021;6(2):253-
Available:https://doi.org/10.34198/ejms.6221.253269
Abd-Elhameed WM, Youssri, YH. Solutions of
the connection problems between fermat and
generalized Fibonacci polynomials. JP Journal
of Algebra, Number Theory and Applications.
;38(4):349-362.
Available:http://dx.doi.org/10.17654/NT038040349
Koshy T. Fibonacci and Lucas Numbers with
Applications. Wiley-Interscience. New York; 2001.
Marohni´c L, Strmeˇcki T. Plastic Number:
Construction and Applications, Advanced
Research in Scientific Areas. 2012;3(7):1523-
Padovan R. Dom Hans van Der Laan and the
Plastic Number. In: Wilson Jones M. Ancient
Architecture and Mathematics: methodology and
the Doric temple. InArchitecture and Mathematics
from Antiquity to the Future 2015 (pp. 271-295).
Birkh¨auser, Cham.
Available:https://doi.org/10.1007/978-3-319-
-2 27. (First published as: Richard
Padovan , “Dom Hans van Der Laan and the
Plastic Number”, pp. 181–193 in Nexus IV:
Architecture and Mathematics, Kim Williams
and Jose Francisco Rodrigues, eds. Fucecchio
(Florence): Kim Williams Books; 2002.
Padovan, R. Dom Hans van der Laan: Modern
Primitive, Architectura and Natura Press; 1994.
Available: http://www.nexusjournal.com/conferences/
N2002-Padovan.html)
Azak AZ. Pauli Gaussian Fibonacci and Pauli
Gaussian Lucas Quaternions. Mathematics.
;10(24):4655.
Available:https://doi.org/10.3390/math10244655
Tas¸kara N, B¨uy¨uk H. On The Solutions of Three-
Dimensional Difference Equation Systems Via
Pell Numbers. Avrupa Bilim ve Teknoloji Dergisi.
;34:433-40..
Vasanthi S, Sivakumar B. Jacobsthal Matrices and
their Properties. Indian Journal of Science and
Technology. 2022;15(5): 207-215.
Available: https://doi.org/10.17485/IJST/v15i5.1948
G¨ ul K. Generalized k-Order Fibonacci Hybrid
Quaternions, Erzincan University Journal of
Science and Technology. 2022;15(2):670-683.
DOI: 10.18185/erzifbed.1132164
Yılmaz N. Split Complex Bi-Periodic Fibonacci and
Lucas Numbers. Commun. Fac. Sci. Univ. Ank.
Ser. A1 Math. Stat. 2022;71(1):153–164.
DOI:10.31801/cfsuasmas.704435
Yılmaz N. The Generalized Bivariate Fibonacci
and Lucas Matrix Polynomials, Mathematica
Montisnigri. 2022;LIII:33-44.
DOI: 10.20948/mathmontis-2022-53-5
Ulutas¸ YT, Toy D. Some Equalities and Binomial
Sums about the Generalized Fibonacci Number
un, Notes on Number Theory and Discrete
Mathematics. 2022;28(2):252–260.
DOI: 10.7546/nntdm.2022.28.2.252-260
Soykan Y, Tas¸demir E. A study on hyperbolic
numbers with generalized Jacobsthal Numbers
Components. International Journal of Nonlinear
Analysis and Applications. 2022;13(2):1965–1981.
Available: http://dx.doi.org/10.22075/ijnaa.2021.
2328
Soykan Y. On Dual Hyperbolic Generalized
Fibonacci Numbers, Indian J Pure Appl Math;
Available:https://doi.org/10.1007/s13226-021-
-2
Deveci, O¨ , Shannon AG. On recurrence results
from matrix transforms. Notes on Number Theory
and Discrete Mathematics. 2022;28(4):589–592.
DOI: 10.7546/nntdm.2022.28.4.589-592
Prasad K, Mahato H. Cryptography using
generalized Fibonacci matrices with Affine-
Hill cipher. Journal of Discrete Mathematical
Sciences and Cryptography. 2021;1-2.
DOI : 10.1080/09720529.2020.1838744
O¨ zkan E, Uysal M. On Quaternions with Higher
Order Jacobsthal Numbers Components, Gazi
University Journal of Science. 2023;36(1):336-
DOI: 10.35378/gujs. 1002454
Goy T, Shattuck M. Fibonacci and Lucas Identities
from Toeplitz-Hessenberg Matrices, Appl. Appl.
Math. 2019;14(2):699–715.
Bilgin NG. Fibonacci Lacunary Statistical
Convergence of Order
in IFNLS. International
Journal of Advances in Applied Mathematics and
Mechanics. 2021;8(4):28-36.
Soykan; AJARR, Asian J. Adv. Res. Rep., vol. 17, no. 1, pp. 32-53, 2023; Article no.AJARR.95531
Kisi O¨ , Tuzcuoglu I. Fibonacci lacunary statistical
convergence in intuitionistic fuzzy normed linear
spaces. Journal of Progressive Research in
Mathematics. 2020;16(3):3001-7.
Kis¸i O¨ , Debnath P. Fibonacci Ideal Convergence
on Intuitionistic Fuzzy Normed Linear Spaces.
Fuzzy Information and Engineering. 2022;1-4.
Available: https://doi.org/10.1080/16168658.
2160226
Cerda-Morales G. Identities for Third Order
Jacobsthal Quaternions, Advances in Applied
Clifford Algebras. 2017;27(2):1043–1053.
Cerda-Morales G. On a Generalization of
Tribonacci Quaternions, Mediterranean Journal of
Mathematics. 2017;14(239):1-12.
Yilmaz N, Taskara N. Tribonacci and Tribonacci-
Lucas Numbers via the Determinants of Special
Matrices, Applied Mathematical Sciences.
;8(39):1947-1955.
Shtayat J, Al-Kateeb A. An Encoding-Decoding
algorithm based on Padovan numbers. arXiv
preprint arXiv:1907.02007; 2019.
Basu M, Das M. Tribonacci matrices and a new
coding theory. Discrete Mathematics, Algorithms
and Applications. 2014;6(01):1450008.
Deveci O¨ , Shannon AG. Pell–Padovan-Circulant
Sequences and Their Applications, Notes on
Number Theory and Discrete Mathematics.
;23(3):100–114.
G¨ocen M. The Exact Solutions of Some Difference
Equations Associated with Adjusted Jacobsthal-
Padovan Numbers, Kırklareli University Journal of
Engineering and Science. 2022;8(1):1-14.
DOI: 10.34186/klujes.10788363
Sunitha K, Sheriba M. Gaussian Tribonacci RGraceful
Labeling of Some Tree Related Graphs,
Ratio Mathematica. 2022;44:188-196.
Dikmen CM, Altınsoy M. On Third Order
Hyperbolic Jacobsthal Numbers. Konuralp Journal
of Mathematics. 2022;10(1):118-126.
Kulog˘ lu, B, O¨ zkan E. Shannon A.G. The Narayana
Sequence in Finite Groups, Fibonacci Quarterly.
;60(5):212–221.
Soykan Y, Tas¸demir E, G¨ocen M. Binomial
Transform of the Generalized Third-Order
Jacobsthal Sequence. Asian-European Journal of
Mathematics. 2022;15(12).
Available: https://doi.org/10.1142/
S1793557122502242.
Soykan Y, Tas¸demir E, Okumus¸ ˙I. A Study
on Binomial Transform of the Generalized
Padovan Sequence, Journal of Science and Arts.
;22(1):63-90.
Available: https://doi.org/10.46939/J.Sci.Arts-
1-a06
Soykan Y, Ta s¸demir E, Okumus¸ ˙I, G¨ocen
M. Gaussian Generalized Tribonacci
Numbers, Journal of Progressive Research in
Mathematics(JPRM). 2018;14 (2):2373-2387.
Soykan Y, Okumus¸ ˙I, Tas¸demir E. On Generalized
Tribonacci Sedenions. Sarajevo Journal of
Mathematics. 2020;16(1):103-122.
ISSN 2233-1964
DOI: 10.5644/SJM.16.01.08
Soykan Y. Matrix Sequences of Tribonacci and
Tribonacci-Lucas Numbers, Communications in
Mathematics and Applications. 2020;11(2):281-
DOI: 10.26713/cma.v11i2.1102
Soykan Y. Explicit Euclidean Norm, Eigenvalues,
Spectral Norm and Determinant of Circulant
Matrix with the Generalized Tribonacci Numbers.
Earthline Journal of Mathematical Sciences.
;6(1):131-151.
Available: https://doi.org/10.34198/ejms.6121.131151
Soykan Y. Tetranacci and Tetranacci-Lucas
Quaternions, Asian Research Journal of
Mathematics. 2019;15(1): 1-24.Article
no.ARJOM.50749.
Soykan, Y. Gaussian Generalized Tetranacci
Numbers. Journal of Advances in Mathematics
and Computer Science. 2019;31(3): 1-21, Article
no.JAMCS.48063.
Soykan Y. Matrix Sequences of Tetranacci and
Tetranacci-Lucas Numbers, Int. J. Adv. Appl. Math.
and Mech. 2019;7(2):57-69.
(ISSN: 2347-2529).
Soykan, Y. On Binomial Transform of the
Generalized Tetranacci Sequence. International
Journal of Advances in Applied Mathematics and
Mechanics. 2021;9(2):8-27.
Sivakumar B, James V. A Notes on Matrix
Sequence of Pentanacci Numbers and Pentanacci
Cubes, Communications in Mathematics and
Applications. 2022;13(2):603–611.
DOI: 10.26713/cma.v13i2.1725
Soykan Y, O¨ zmen N, Go¨cen M. On Generalized
Pentanacci Quaternions, Tbilisi Mathematical
Journal. 2020;13(4):169-181.
Soykan Y. Binomial Transform of the Generalized
Pentanacci Sequence, Asian Research Journal of
Current Science. 2021;3(1):209-231.
-
Abstract View: 54 times
PDF Download: 17 times