A Study of Physical Fitness Index in Physiotherapy Students by Using Modified Harvard Step Test

Asra Jabeen a++* and D. Sarmila a#

a Visakha Academy of Paramedical Sciences College of Physiotherapy, Visakhapatnam, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJARR/2022/v16i12457

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/93935

Received: 10/10/2022
Accepted: 15/12/2022
Published: 23/12/2022

ABSTRACT

Background and Objective: Physical fitness implies performing an inactive task efficiently besides sense of physical, mental and social well-being and the ability to deal with crisis demanding unusual physical endeavor. In this study, the physiotherapy students of age group 17 to 22 years of Visakha Academy of Paramedical Sciences College of Physiotherapy were taken to assess their physical fitness.

Methods: An observational study was done in 50 young male and female physiotherapy students by using Modified Harvard Step test to measure Physical Fitness Index.

Data Analysis: Statistical analysis was done using Chi Square test.

Results: Statistical analysis shows that physical fitness in physiotherapy students is not satisfactory. The Chi Square values show association between body mass index and physical fitness levels in physiotherapy students.

Conclusion: Physical fitness of physiotherapy students in Visakha Academy of Paramedical Sciences College of Physiotherapy, is not satisfactory. Subjects with higher BMI had lower physical fitness.

** Student;
*Assistant Professor;
*Corresponding author: Email: asrjabeen1605@gmail.com;
Keywords: Body Mass Index (BMI); modified harvard step test; physical fitness index; physiotherapy students.

1. INTRODUCTION

Physical fitness implies performing an inactive task efficiently along with sense of physical, mental and social well-being and the ability to deal with crisis demanding unusual physical endeavor. Low levels of physical fitness leads to obesity in individuals. In the past three decades the adult obesity rates have almost quadrupled [1-6]. Physiotherapy students during their curriculum are dealt with different kinds of burdens and stress and due to a more sedentary lifestyle, there's a decrease in physical fitness levels [7-12]. There is a necessity to know the Physical Fitness levels of our future Physiotherapists, therefore they can acquire a healthy lifestyle right from the beginning, so that they stay motivated to be healthy throughout their walk of life [13-22].

The two major challenges around the world for disease prevention and health are the epidemic of obesity and overweight [23-25]. Many countries have witnessed the rise of obesity in their citizens double and even quadruple due to increasingly sedentary lifestyle, urbanization, industrialization and consumption of processed foods and high calorie diets over the past three decades [26-28]. The healthy lifestyle of physiotherapy students facilitates the formation of physically fit professionals [29-36]. Therefore, there is compelling evidence that the health of Physiotherapists matters, and their physical activity levels practices influence their clinical attitudes towards physical fitness. The available information provided by Dharmesh Parmar, Nikita Modh (July 2015) in their study concluded that the Physical fitness of physiotherapy students in Ahmedabad Physiotherapy College is not satisfactory and Females are having better physical fitness. Further research is recommended to determine the available information, as it included only healthy and overweight BMI students excluding the Obese BMI students [37-40].

In this study, the physiotherapy students of age group 17 to 22 years of Visakha Academy of Paramedical Sciences College Of Physiotherapy were taken to assess their physical fitness. The study setup was prepared in VAPMS College of Physiotherapy. The well-equipped Physiotherapy department with good infrastructure, adequate ventilation, basic resources like Harvard Step Bench, Stadiometer, and a weighing scale was provided, which efficiently helped in recording the physical anthropometry for pre and post-test evaluation [41-46]. In this study, Physical Fitness Index of fifty physiotherapy students was assessed using a Modified Harvard step test.

2. MATERIALS AND METHODS

Study Design: Observational Study

Study Setting: Visakha Academy of Paramedical Sciences College of Physiotherapy, Madhurawada, Visakhapatnam.

Study Period: 2 months

Study Subjects: Physiotherapy Students

Sample size: 50 Students

Statistical Test: Chi Square Test

2.1 Inclusion Criteria

a. Healthy young male and female Physiotherapy students.
b. Aged between 17 to 24 years.
c. BMI 18-40 kg/m²

2.2 Exclusion Criteria

b. History of respiratory disorders
c. History of diabetes mellitus, hypertension, bronchial asthma
d. History of any vital surgery in the recent past.
e. History of drug intake.
f. History of alcohol and smoking.
g. Students with locomotor and musculoskeletal disability.

2.3 Materials

1: Modified Harvard Step bench: It is used for Harvard Step exercise testing
2: Stopwatch: It is used to record the timing in seconds during the procedure
3: Metronome App: It is used to adjust the frequency of steps.
4: Weighing Machine: It is used to measure the weight.
5: Stadiometer: It is used to measure the height.

2.4 Modified Harvard Step Test Method

The subjects were asked to relax during the procedure.
Recording of Physical Fitness Index by using Modified Harvard Step Test. The subjects were asked to be lightly clothed. They were asked to sit quietly for 5 min. Then resting pulse rate was recorded by palpating the radial artery manually. Thereafter, they were asked to perform the stepping exercise.

The person who is taking the test steps up and down on a platform in a cycle of 2 seconds. The step is at a height of 33cms a wooden box. The rate of 30 steps per minute must be sustained for five minutes or until the point of exhaustion, which means the point at which the subject cannot maintain the stepping rate for 15 seconds.

Stepping up and down a 33 cms high step box at a rate of 30 times/min for 5 min. The total duration of the stepping exercise and post-exercise pulse rate at 1-1.5 minutes will be recorded.

Those with heart rates above 200 beats per minute, had heavy breathing, or unable to sustain, were stopped immediately. Once the participants have accomplished the step test or were ceased due to the aforementioned reasons, were quickly made to sit down on the box and rest.

The fitness test was conducted under close supervision. The detailed procedure of the exercise test was explained to the subjects & an actual demonstration was given before starting the test.

The Physical Fitness Index is calculated by using the following formulae.

\[
\text{Physical Fitness Index} = \frac{(100 \times \text{test duration in seconds})}{(5.5 \times \text{pulse count between 1 and 1.5 minutes})}
\]

According to the Modified Harvard Step test the following scores are used for classifying the physical fitness of study subjects.

3. DATA ANALYSIS

Statistical analysis was done using Chi square test.

<table>
<thead>
<tr>
<th>PFI Rating</th>
<th>PFI Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>o Excellent</td>
<td>>115</td>
</tr>
<tr>
<td>o Good</td>
<td>103-115</td>
</tr>
<tr>
<td>o Fair</td>
<td>91-102</td>
</tr>
<tr>
<td>o Poor</td>
<td><91</td>
</tr>
</tbody>
</table>

4. OBSERVATION AND RESULTS

Graph 1: The X-axis represents the weight status (Healthy BMI, Overweight BMI, Obese BMI) of the study subjects and the Y-axis represents the number of study subjects in the BMI category of Healthy, Overweight, and Obese.
Graph 2: The X-axis represents the PFI Rating (Excellent, Good, Fair, Poor) and the Y-axis represents the number of study subjects in the BMI category of Healthy, Overweight and Obese.

![Graph 2](image)

Graph 3: The graph represents the data of Overall Performance of study subjects. The X-axis represents the PFI Rating and Y-Axis represents Performance Percentage. 22% are excellent, 26% are good, 22% are fair, 30% are poor.

![Graph 3](image)

Table 1. Overall Performance of study subjects

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Overweight</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy%</td>
<td>4%</td>
<td>16%</td>
<td>2%</td>
</tr>
<tr>
<td>Overall%</td>
<td>22%</td>
<td>26%</td>
<td>22%</td>
</tr>
<tr>
<td>Overweight%</td>
<td>10%</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>Obese%</td>
<td>8%</td>
<td>4%</td>
<td>18%</td>
</tr>
</tbody>
</table>
Table 2. Overall health status of study subjects

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>OW</td>
<td>OBSE</td>
<td>OW</td>
<td>OBSE</td>
<td>OW</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>10%</td>
<td>8%</td>
<td>16%</td>
</tr>
<tr>
<td>4%</td>
<td>10%</td>
<td>8%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Chi square test

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>ROW totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>2 (2.64) [0.16]</td>
<td>8(3.12) [7.63]</td>
<td>1(2.64) [1.02]</td>
<td>1 (3.60) [1.88]</td>
<td>12</td>
</tr>
<tr>
<td>Overweight</td>
<td>5 (3.96) [0.27]</td>
<td>3 (4.68) [0.60]</td>
<td>5 (3.96) [0.27]</td>
<td>5 (5.40) [0.03]</td>
<td>18</td>
</tr>
<tr>
<td>OBSE</td>
<td>4 (4.40) [0.04]</td>
<td>2 (5.20) [1.97]</td>
<td>5 (4.40) [0.08]</td>
<td>9 (6.00) [1.50]</td>
<td>20</td>
</tr>
<tr>
<td>Column totals</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Chi square: 15.4509, p: 0.017025
The chi square values show association between body mass index and physical fitness levels in physiotherapy students.

5. DISCUSSION

The present study evaluated the physical fitness of fifty physiotherapy students using Modified Harvard Step Method. It has four grades of physical fitness based on the scoring obtained after the exercise. This is determined to be a satisfactory method for assessing physical fitness of Indians. Many authors have demonstrated the utility of this method in Indian subjects. This method was adopted by Sunil KR Das, Samita Mahapatra, Goutam Bhattacharya, Debatri Mukherjee in the year 1993 at Laboratory of Human Performance Assessment, Department of Physiology, University Colleges of Science and Technology, Calcutta.

In the present study Fifty physiotherapy students with a mean age of 21 years and mean BMI of 27.944 were evaluated for physical fitness in this study. It is important for future physiotherapists to know their level of physical fitness and try to improve on it. Ganiwala SK, Sen SL, Khandare “in the year 1968 performed the HST in Indian Students, 51 female medical college students in the age group of 17 to 25 years using a stepping height of 18 inches” Banerjee PK and Chatterjee S “in the year 1983 studied the effectiveness of the Harvard step test in assessing the physical fitness in 54 Indian adolescent boys”.

The present study showed that physiotherapy students with some regular physical activity and participation in sports activities are having excellent physical fitness when compared to the students who don’t regularly exercise. Twenty two percent of subjects had excellent physical fitness. Twenty six percent of the subjects had fair physical fitness. Twenty two percent of the subjects had fair physical fitness and thirty percent of the subjects had poor physical fitness. It was found that Forty eight percent of subjects participated in the study had grade 2’ physical activity (like sports, athletics, gym, etc.) This study has clearly established that physical activity is an important factor and clairvoyant of physical fitness. Among subjects who had excellent physical fitness, pulse rate variability (pre and post exercise) was minimum and among subjects who had poor physical fitness index it was maximum. The present study is consistent with study by Hammond (1987) which says that “endurance athletes have lower resting and exercise heart rates which may be in part relate to down regulation of cardiac B- adrenergic receptors secondary to repeated and prolonged episodes of sympathetic stimulation during exercise”.

“Physical fitness was inversely related with BMI, physical activity, and cardiovascular variables. Physical fitness had a statistically significant inverse relation with BMI. The students who regularly exercise were under the category of excellent physical fitness. In the present study subjects of VAPMS College of Physiotherapy, who had regular physical activity had better physical fitness and two variables were inversely related” [47].

The above results states that this study rejects Null Hypothesis thereby accepting Alternate Hypothesis that there is significant association between BMI and PFI in a study of physical fitness index in Physiotherapy students by using Modified Harvard Step Test.

There were few challenges faced during the period of research period due to COVID-19 pandemic. The required sample size and the willingness of the students participation was a challenge.

Some students have been identified as more likely to be excluded from research as a result of the coronavirus pandemic. Some students who have been recovered from the coronavirus have participated in the study and the result of their physical fitness was poor. There was difficulty in collecting the anthropometric parameters in students in such situation and to avoid diurnal variation all the exercise data were collected during morning hours between 9 am to 12 pm.

All the precautionary measures were taken throughout. Further research is recommended for this study as it has being observational, physical fitness is limited and was assessed only once for every subject. Early exhaustion during the exercise test usually makes it difficult to assess fitness.

The 33 cm height of the step bench makes it difficult for the short stature subjects to step up and down while comparatively, it becomes easier for the taller subjects.

Using this test to assess in large groups will be time consuming.
The results of this study are limited to the Physiotherapy students of VAPMS College only. The recommendations for Physiotherapy students should be that they get encouraged to adopt a physically active lifestyle to maintain optimum fitness and health. The participation of students in sports activities at college should be made mandatory [48-52].

Being physically fit also ensures students being mentally fit, stress-free, energetic, and enthusiastic. It also helps in improving their professional growth [53-61].

6. CONCLUSION AND SUMMARY

Physical Fitness of Physiotherapy students at Visakha Academy of Paramedical Sciences College Of Physiotherapy, Madhurawada, Visakhapatnam is not satisfactory. This may be due to the sedentary lifestyle and lack of sporting activities and also over-emphasis on academic pursuits.

Regular physical activity is an important determinant of physical fitness. Overweight and Obesity decrease the physical fitness of individuals. Pulse rate variability is less among physically fit individuals during physical exercise [62-68].

An observational study was carried out in Visakha Academy of Paramedical Sciences, Madhurawada, Visakhapatnam to know the Physical Fitness Levels in Physiotherapy Students. All the students satisfying inclusion criteria and willing were included in the study. Fifty students participated in this study. Modified Harvard Step Test was used to assess the Physical Fitness Index. This is a validated method for Indian subjects and classifies the subjects into four groups of physical fitness based on the scores obtained. Heart rate recovery after the exercise using the Modified Harvard Step is used to calculate the scores.

Results were analyzed using Chi Square statistics. 22% of students had excellent physical fitness, 26% of students had good physical fitness, 22% of students had fair physical fitness and 30% of students had poor physical fitness.

Subjects with higher BMI had lower physical fitness. Not all the Obese students in the study were poor in their physical fitness. 8% of the obese students were in excellent category.

CONSENT

All authors declare that ‘written informed consent was obtained from the patient (or other approved parties) for publication of this case report and accompanying images’.

ETHICAL APPROVAL

As per international standard or university standard written ethical approval has been collected and preserved by the author(s).

ACKNOWLEDGEMENT

The Authors want to express an earnest appreciation to Dr. NTRUHS Research and Development Department for providing the opportunity in assimilating and impelling us to explore and learn. This opportunity has instilled a sense of curiosity and yielded a thought that “SUPPOSING IS GOOD BUT FINDING OUT IS BETTER”.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

7. Ganeriwal SK, Sen SL, Khandre performed the HST in 51 female medical college students in the age group of 17 to 25 years using a stepping height of 18 inches and observed that there is a negative correlation between fitness index and body weight and fitness index and resting pulse rate and a positive correlation between fitness index and body height. 1968.

8. PK Banerjee, legend of Indian Football, dies at 83. ESPN; 2020. [retrieved Mar 25 2020]

9. Bamini Gopinath, Annette Kifley, Paul Mitchell stated that a higher level of physical activity increases the likelihood of surviving an additional 10 years free of chronic diseases, cognitive impairment and functional disability. 2018;8(1):10522. DOI: 10.1038/s41598-018-28526-3

10. Rullestad A, Eivind Meland and Thomas Mildestvedt stated that factors which predicted physical activity after two years were a positive attitude towards physical fitness. J Environ Public Health. 2021;24:9105953. DOI: 10.1155/2021/9105953. eCollection 2021

11. Ganeriwal SK, Sen SL, Khandre performed the HST in 51 female medical college students in the age group of 17 to 25 years using a stepping height of 18 inches and observed that there is a negative correlation between fitness index and body weight and fitness index and resting pulse rate and a positive correlation between fitness index and body height; 1968.

21. Sloan AW, Sloan AW. Keen applied the harvard step test to members of the rowing and rugby clubs of capetown university at the beginning of the academic year and again after 2-4 months of systematic training for these competitive sports. keen The Harvard step test of dynamic fitness. Triangle. 1962;5:358-63. PMID 13989240.

23. Hammond stated that endurance athletes have lower resting and exercise heart rates which may be in part relate to down regulation of cardiac B-adrenergic receptors secondary to repeated and prolonged episodes of sympathetic stimulation during exercise. Z Kardiol. 1992;81;Suppl 4:71-8.

DOI: 10.1503/cmaj.051351

25. Pansare MS et al., which showed that one month training is sufficient to bring about increase in physical fitness index and pulmonary function test; 1980.

26. George e welch, Robert, Bruce, Bridges WC, Dean Johnson A, Lehmann JH, et al. evaluated the exercise performance of 20 normal subjects ranging in age from 22 to 49 years and 20 patients from 13 to 77 years of age with the various cardio-respiratory disease using a new step test in comparison with a previously described treadmill procedure; 1952.

27. Harish EA. L Pool, MB proposed clinical exercise tolerance tests, which are closely related to tests of fitness for athletic, industrial and military purposes; 1958.

28. Hill AV studied the muscular movement in man and has determined the time course of recovery and has applied his results to the practical management of track events that are run in heats; 1927.

29. Das SK, Nath N. Roy a 22 studied the PFI with astride jump test on 218 school girls having age 12 to 16 years; 1990.

30. Das SK, Roy A. 23 studied the physical fitness scores of 170 schoolboys having age 11 to 18 years with the astride jump test as an alternative to the Harvard Step Test; 1986.

31. Das SK, Nath N. Ray a 24 studied the PFI using astride jump test as an alternative of Harvard step test in 218 school girls having age 12 to 16 years in the suburban area of Calcutta in which 19% girls had excellent and 16% had poor physical fitness; 1990.

32. Madhusudhan U. Conducted a study to know the effect of high & low-intensity aerobic training on the physical fitness index, the results found that after 14weeks of aerobic training both the exercise groups had improved in pfi, but the high-intensity group had a significant (p<0.05) improvement in PFI (97.18-101.14) than low-intensity group (98.12-100.6); 2005.

DOI: 10.1136/bmj.2.5147.257,
PMID 13823475.

34. Fletcher JG. Lancet studied the test which meant the endurance athletes will always excel in the test which is physiologically slanted towards aerobic capacity such as is necessary for moderate-intensity middle distance running. The taller endurance athlete will also do well in this test as they are at a physiological advantage in contrast to the shorter, heavier power event athlete who will seem disproportionately unfit; 1958.

36. Ganeriwal SK, Sen SL. Khandre" performed the HST in 51 female medical college students in the age group of 17 to 25 years using a stepping height of 18 inches and observed that there is a negative correlation between fitness index and body weight and fitness index and resting pulse rate and a positive correlation between fitness index and body height; 1968.

37. Cruchet R, Moulinier r. Schneider EC .18 studied the physiology of muscular activity and stated that the systolic pressure plateau was maintained throughout exercise by the subject in good physical condition while it fell below normal during the exercise period in the unfit (untrained) subject; 1939.

39. Das Sk. Adhikari A, Goshthakur D. Studied the PFI with Astride Jump Test (AJT) on 78 boys and 74 girls having age 11 to 14 years from a school situated near Calcutta; 1988.

40. Shivappa G.C studied physical fitness index with modified harvard step in medical students in the age group of 17-22 years with varying degrees of physical activity; 2012.

42. Sloan A.W.Sloan aw, Keen applied the harvard step test to members of the rowing
and rugby clubs of capetown university at the beginning of the academic year and again after 2-4 months of systematic training for these competitive sports. keen on The Harvard step test of dynamic fitness. Triangle. 1962;5:358-63. PMID 13989240.

46. Sunil KR Das, Samita Mahapatra. Goutam Bhattacharya, Debatri Mukherjee in the year 1993 demonstrated the utility of this method in Indian subjects for assessing physical fitness of Indians.

53. Jain AK studied the cardiorespiratory responses to steady-state in sedentary men 20-30 years old; 1983.

54. JH Mc Curdy studied the adolescent changes in heart rate and blood pressure. The study stated that the cardiovascular mechanism is controlled by the lower, older, and more stable portion of the central nervous system; 1910.

55. Johnson Brouha. Darling also formulated the short form in the long-form, the pulse is counted to 1 to 1.5, 2 to 2.5, and 3 to 3.5 minutes after the exercise in the short form, the pulse is taken only once i.e 1 to 1.5 minutes after the exercise; 1942.

56. Patterson JL, Graybeil A, Lenhardt HF. Johnes Madsen M studied physical fitness using capacity step test on 305 volunteer subjects ranging in age from 18 to 44 years; 1964.

59. Master Sarada Subramanya, Madhava K, Singh Hd. Modified by adding another step to increase the sensitivity by doubling the workload to 10,000 ft-lb and this came to be known as the double master test; 1942.

60. Master AM. Augmented two step test. Trans Assoc Life Ins Med Dis Am. 1971; 54:42-59. DOI: 10.1161/01.cir.56.5.699, PMID 334392.

61. Col Lt. Gupta KK showed that there was significant improvement in physical fitness score after 34 days of training, the Heritage family study. Med Sci Sports Exerc. 1998;30:252-8.

66. Baross AW, Hodgson DA, Padfield SL, Ian L. Swaine studied reductions in resting blood pressure in young adults when isometric exercise is performed whilst walking. 2017;Article ID 7123834.

APPENDIX

- Masterchart

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS (BMI)</th>
<th>HEIGHT (cm)</th>
<th>WEIGHT (m²)</th>
<th>BMI</th>
<th>PULSE RATE (1 to 1.5 sec)</th>
<th>PH SCORE</th>
<th>PH RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>161</td>
<td>62.85</td>
<td>24.2</td>
<td>57</td>
<td>95.69</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>155</td>
<td>58.7</td>
<td>24.4</td>
<td>60</td>
<td>90.9</td>
<td>GOOD</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>144</td>
<td>48.4</td>
<td>23.3</td>
<td>61</td>
<td>89.41</td>
<td>GOOD</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>165</td>
<td>56</td>
<td>20.6</td>
<td>69</td>
<td>79.05</td>
<td>FAIR</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>159</td>
<td>58.9</td>
<td>23.3</td>
<td>61</td>
<td>89.41</td>
<td>GOOD</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>155</td>
<td>44.85</td>
<td>18.7</td>
<td>73</td>
<td>74.71</td>
<td>POOR</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>160</td>
<td>58.9</td>
<td>23</td>
<td>62</td>
<td>87.97</td>
<td>GOOD</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>175</td>
<td>74.55</td>
<td>24.3</td>
<td>63</td>
<td>86.58</td>
<td>GOOD</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>156</td>
<td>44.85</td>
<td>18.4</td>
<td>61</td>
<td>89.41</td>
<td>GOOD</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>182</td>
<td>73.6</td>
<td>22.2</td>
<td>60</td>
<td>90.9</td>
<td>GOOD</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>158</td>
<td>59</td>
<td>23.5</td>
<td>59</td>
<td>92.44</td>
<td>GOOD</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>174</td>
<td>64.1</td>
<td>21.2</td>
<td>56</td>
<td>97.4</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>13</td>
<td>OW</td>
<td>154</td>
<td>60.3</td>
<td>25.4</td>
<td>59</td>
<td>92.44</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>14</td>
<td>OW</td>
<td>157</td>
<td>62.5</td>
<td>25.2</td>
<td>64</td>
<td>85.22</td>
<td>GOOD</td>
</tr>
<tr>
<td>15</td>
<td>OW</td>
<td>160</td>
<td>66.5</td>
<td>26</td>
<td>54</td>
<td>101.01</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>16</td>
<td>OW</td>
<td>160</td>
<td>69</td>
<td>27</td>
<td>62</td>
<td>87.97</td>
<td>GOOD</td>
</tr>
<tr>
<td>17</td>
<td>OW</td>
<td>158</td>
<td>80.5</td>
<td>32.2</td>
<td>59</td>
<td>92.44</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>18</td>
<td>OW</td>
<td>155</td>
<td>62.55</td>
<td>25.9</td>
<td>68</td>
<td>80.21</td>
<td>FAIR</td>
</tr>
<tr>
<td>19</td>
<td>OW</td>
<td>157</td>
<td>70.5</td>
<td>28.4</td>
<td>61</td>
<td>89.41</td>
<td>GOOD</td>
</tr>
<tr>
<td>20</td>
<td>OW</td>
<td>161</td>
<td>68</td>
<td>26.2</td>
<td>71</td>
<td>76</td>
<td>POOR</td>
</tr>
<tr>
<td>21</td>
<td>OW</td>
<td>154</td>
<td>71</td>
<td>29.9</td>
<td>72</td>
<td>75.75</td>
<td>POOR</td>
</tr>
<tr>
<td>22</td>
<td>OW</td>
<td>152</td>
<td>63</td>
<td>27.3</td>
<td>66</td>
<td>82.64</td>
<td>FAIR</td>
</tr>
<tr>
<td>23</td>
<td>OW</td>
<td>147</td>
<td>55</td>
<td>25.5</td>
<td>65</td>
<td>83</td>
<td>FAIR</td>
</tr>
<tr>
<td>24</td>
<td>OW</td>
<td>148</td>
<td>57</td>
<td>26</td>
<td>58</td>
<td>94.04</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>25</td>
<td>OW</td>
<td>160</td>
<td>68</td>
<td>26.6</td>
<td>74</td>
<td>73.71</td>
<td>POOR</td>
</tr>
<tr>
<td>26</td>
<td>OW</td>
<td>177</td>
<td>87</td>
<td>27.8</td>
<td>66</td>
<td>82.64</td>
<td>FAIR</td>
</tr>
<tr>
<td>27</td>
<td>OW</td>
<td>172</td>
<td>78</td>
<td>26.4</td>
<td>67</td>
<td>81.4</td>
<td>FAIR</td>
</tr>
<tr>
<td>28</td>
<td>OW</td>
<td>168</td>
<td>76</td>
<td>26.9</td>
<td>75</td>
<td>72.72</td>
<td>POOR</td>
</tr>
<tr>
<td>29</td>
<td>OW</td>
<td>178</td>
<td>88</td>
<td>27.8</td>
<td>57</td>
<td>95.69</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>30</td>
<td>OW</td>
<td>170</td>
<td>78</td>
<td>27</td>
<td>77</td>
<td>70.83</td>
<td>POOR</td>
</tr>
<tr>
<td>31</td>
<td>O</td>
<td>145</td>
<td>65.9</td>
<td>31.3</td>
<td>63</td>
<td>86.58</td>
<td>GOOD</td>
</tr>
<tr>
<td>32</td>
<td>O</td>
<td>162</td>
<td>87.25</td>
<td>32</td>
<td>56</td>
<td>97.4</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>33</td>
<td>O</td>
<td>150</td>
<td>62.05</td>
<td>24.2</td>
<td>62</td>
<td>87.97</td>
<td>GOOD</td>
</tr>
<tr>
<td>34</td>
<td>O</td>
<td>147</td>
<td>74.55</td>
<td>34.5</td>
<td>68</td>
<td>80.21</td>
<td>FAIR</td>
</tr>
<tr>
<td>35</td>
<td>O</td>
<td>174</td>
<td>92</td>
<td>30.4</td>
<td>78</td>
<td>69.93</td>
<td>POOR</td>
</tr>
<tr>
<td>36</td>
<td>O</td>
<td>157</td>
<td>77</td>
<td>31.2</td>
<td>69</td>
<td>79.05</td>
<td>FAIR</td>
</tr>
<tr>
<td>37</td>
<td>O</td>
<td>157</td>
<td>76</td>
<td>30.8</td>
<td>80</td>
<td>66.51</td>
<td>POOR</td>
</tr>
<tr>
<td>38</td>
<td>O</td>
<td>142</td>
<td>80</td>
<td>39.7</td>
<td>58</td>
<td>94.04</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>39</td>
<td>O</td>
<td>160</td>
<td>90</td>
<td>35.2</td>
<td>83</td>
<td>65.71</td>
<td>POOR</td>
</tr>
<tr>
<td>40</td>
<td>O</td>
<td>148</td>
<td>67</td>
<td>30.6</td>
<td>69</td>
<td>79.05</td>
<td>FAIR</td>
</tr>
<tr>
<td>41</td>
<td>O</td>
<td>176</td>
<td>101</td>
<td>32.5</td>
<td>82</td>
<td>66.51</td>
<td>POOR</td>
</tr>
<tr>
<td>42</td>
<td>O</td>
<td>180</td>
<td>107</td>
<td>33</td>
<td>84</td>
<td>64.9</td>
<td>POOR</td>
</tr>
<tr>
<td>43</td>
<td>O</td>
<td>183</td>
<td>104</td>
<td>31.3</td>
<td>86</td>
<td>63.42</td>
<td>POOR</td>
</tr>
<tr>
<td>44</td>
<td>O</td>
<td>186</td>
<td>110</td>
<td>31.8</td>
<td>59</td>
<td>92.44</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>45</td>
<td>O</td>
<td>178</td>
<td>105</td>
<td>33.1</td>
<td>67</td>
<td>81.4</td>
<td>FAIR</td>
</tr>
<tr>
<td>46</td>
<td>O</td>
<td>164</td>
<td>100</td>
<td>37.2</td>
<td>87</td>
<td>62.69</td>
<td>POOR</td>
</tr>
<tr>
<td>47</td>
<td>O</td>
<td>175</td>
<td>96</td>
<td>31.3</td>
<td>66</td>
<td>82.64</td>
<td>FAIR</td>
</tr>
<tr>
<td>48</td>
<td>O</td>
<td>178</td>
<td>99</td>
<td>31.2</td>
<td>59</td>
<td>92.44</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>49</td>
<td>O</td>
<td>175</td>
<td>93</td>
<td>30.4</td>
<td>89</td>
<td>61.2</td>
<td>POOR</td>
</tr>
<tr>
<td>50</td>
<td>O</td>
<td>186</td>
<td>107</td>
<td>30.9</td>
<td>90</td>
<td>60.6</td>
<td>POOR</td>
</tr>
</tbody>
</table>
1) Modified Harvard step test procedure performance by the female subject

2) Modified Harvard step test procedure performance by the male subject
3) Measurement of pulse rate in the female subject

4) Measurement of pulse rate in male subject